Identification	Subject	CHEM 215 Introduction	on to Che	mical Engineering 6 ECTS	
	Department Chemistry and Chemical Engineering				
	Program Undergraduate			0	
	Term	erm Fall 2024			
	Instructor	tor Shahin Orujov			
	E-mail:	shahin.orujov@socard	ownstream	m.az	
	Phone				
	Classroom/hours	TBC			
		Ibe			
	Office hours				
Prerequisites					
Language	English				
Compulsory/Elect ive	Compulsory				
Required	1. Principles of Chemical Engineering Processes, Nayef Ghasem and				
textbooks and	Redhouane Henda, 2 nd edition, 2015				
course materials	2. Elementary Principles of Chemical Processes by Richard M. Felder and				
	Ronald W. Rousseau, 4 th edition, 2016				
	3. Chemical Engineering: An Introduction by Morton M. Denn, 2013				
	4. Transport Processes and Separation Process Principles by Christie J.				
	Geankoplis (Published 2018, 5th Edition)				
	5. Introduction to	o Chemical Engineerin	g Therm	odynamics by J.M. Smith,	
	H.C. Van Ness, and M	I.M. Abbott (Published	2005, 7tl	n Edition)	
	6. Fundamentals of Heat and Mass Transfer by Frank P. Incropera and				
	David P. DeWitt (Published 2017, 7th Edition)				
	7. Separation Process Principles by Ernest J. Henley, J. D. Seader, and D. F.				
	Roper (Published 2011, 2nd Edition)				
	8. Chemical Process Design and Integration by Robin Smith (Published				
	2005)				
	9. Chemical Process Safety: A Mathematical Approach by Daniel A. Crowl				
	and Joseph F. Louvar (Published 2011, 3rd Edition)				
	10. Chemical Engineering Design by Gavin Towler and Ray Sinnott				
	(Published 2013, 2nd Edition)				
Website of course	This course is based on traditional face-to-face classes.				
Teaching methods	Lecture		X		
	Group discussion		X		
	Practical tasks		X		
Evaluation	Methods	Date/deadlines		Percentage (%)	
	Activity			5	
	Quiz	TBC		15	
	Midterm Exam	TBC		30	
	Presentation/Group	15 th week		10	
	work			-	
	Final Exam	ТВС		40	
	Total			100	

Course outline	This Introduction to Chemical Engineering course provides a comprehensive				
	overview of key concepts and practices in the field. Students begin with a review				
	of basic chemistry and an introduction to chemical engineering principles. They				
	then explore material and energy balances, foundational fluid mechanics, and the				
	basics of chemical thermodynamics. The course includes a midterm exam to				
	assess understanding before delving into heat transfer fundamentals and				
	separation processes. Students also learn about chemical process design,				
	emphasizing safety, environmental awareness, and real-world applications. The				
	course culminates in a project presentation where students apply their knowledge				
	to a practical problem, demonstrating their grasp of chemical engineering				
	principles.				
Course objectives	• General Objective of the Course: To meet curriculum requirements of the				
	School of Engineering and Applied Sciences (SEAS).				
	• Specific Objectives of the Course: To provide students with foundational				
	knowledge in key topics such as material and energy balances, fluid mechanics,				
	and thermodynamics, while emphasizing safety and environmental awareness.				
	By integrating theory and practical applications, the course prepares students for				
	advanced studies and real-world challenges in chemical engineering.				
Learning	By the end of the course the students should be able:				
outcomes	• Apply fundamental principles of material and energy balances to analyze				
	and solve problems in chemical processes.				
	• Utilize basic concepts of fluid mechanics and thermodynamics to assess				
	and design chemical engineering systems.				
	• Implement heat transfer and separation techniques effectively in process				
	design and analysis.				
	Demonstrate safety and environmental awareness in the context of chemical				
	engineering practices and communicate project findings clearly and				
	professionally.				

Policy	Participation			
-	For a variety of reasons, participation in a classroom context is essential. It is			
	essential to the learning process, promotes teamwork, and aids in the general			
	success of both the individual students and the class as a whole.			
	Presentation/Group work			
	Students will participate in group projects that culminate in presentations, where			
	they will collaboratively explore and present key concepts in chemical			
	engineering. This activity is designed to enhance teamwork and communication			
	skills while encouraging critical analysis of engineering principles. Through this			
	process, students will deepen their understanding of the subject matter and learn			
	• Activity			
	Students will actively participate in class activities which may include			
	discussions, group work, and hands-on problem-solving exercises. Contributions			
	to these activities will be evaluated based on engagement, collaboration, and the			
	application of chemical engineering concepts. Additionally, successful			
	completion of group presentations and projects will also contribute to their			
	overall assessment, reinforcing both understanding and communication skills.			
	• Quiz A consistent method of gauging your understanding of the content covered in			
	aloss is through guizzos. They assist you and your teacher in avaluating your			
	class is through quizzes. They assist you and your teacher in evaluating your			
	more explanation. Each quiz will consist of 2.5 questions, and each quiz will be			
	more explanation. Each quiz will be three quizzes			
	Marked with 5 point. There will be three quizzes.			
	• Withurawai (pass/iai) The School Science and Engineering grading guidelines are carefully adhered to			
	throughout this course. To pass, a student must typically receive a mark of at least			
	60%. If the student fails, the course.			
	Cheating/plagiarism			
	Any form of plagiarism or cheating on a test, quiz, or project will result in the			
	cancellation of the assignment. In this scenario, the student will receive a score of			
	zero (zero) without any further consideration.			
	• Illness Student with an illness may miss a quiz or presentation. This might be because			
	the student needs to go to the hospital recover at home, or attend regular medical			
	appointments. In this case, the student must inform the instructor in advance			
	about the illness and must present a document from their doctor. After			
	considering the situation, the instructor may set a new date for the quiz or project			
	presentation. Only one opportunity will be given to the student. The students who			
	don't inform the instructor in advance will not be given a chance to retake the			
	quiz or give a presentation.			
• Protessional benavior guidelines				
	fosters a positive academic and professional atmosphere. Discussions without			
	permission and unethical conduct are absolutely forbidden.			
	• Ethics			
	In class, students must not be late. During class, mobile phones must be put			
away and turned off.				
XX7. 1	Tentative Schedule			
Weeks	Topics Reference books			

Weeks	Topics	Reference books
1	Introduction to Chemical Engineering & Basic Chemistry Review	[2] Chapter 1 and 2

2-3	Material and Energy Balances	[1] Chapter 2
23		[3] Chapter 3 and 4
4-5	Fluid Mechanics Basics	[1] Chapter 5
		[4] Chapter 1,2 and 3
6-7	Introduction to Chemical Thermodynamics	[5] Chapter 1 and 2
8	Midterm exam	
9-10	Heat Transfer Fundamentals	[6] Chapter 1,2,3 and 4
11	Introduction to separation processes	[1] Chapter 1,2,3
		[7] Chapter 6
12	Introduction to Chemical Process Design	[1] Chapter 10
		[8] Chapter 1 and 2
13	Safety and Environmental Awareness	[9] Chapter 1,2 and 3
14	Chemical Engineering Applications	[1] Chapter 12 [10] Chapter 1 and 2
15	Project Presentation	
Final Exam		